Cartesian decomposition and numerical radius inequalities
نویسندگان
چکیده
منابع مشابه
Cartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملcartesian decomposition of matrices and some norm inequalities
let x be an n-square complex matrix with the cartesian decomposition x = a + i b, where a and b are n times n hermitian matrices. it is known that $vert x vert_p^2 leq 2(vert a vert_p^2 + vert b vert_p^2)$, where $p geq 2$ and $vert . vert_p$ is the schatten p-norm. in this paper, this inequality and some of its improvements ...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملInequalities and Equalities for the Cartesian Decomposition of Complex Matrices
Let A and B be Hermitian matrices and let C = A+ iB. Inequalities and equalities for the eigenvalues, singular values of the matrices A, B, and C are discussed. Known results on inequalities are surveyed, new results on equality cases are proved, and open problems are mentioned.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.12.016